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Buffeting flow on transonic aerofoils serves as a model problem for the more
complex three-dimensional flows responsible for aeroplane buffet. The origins of
transonic aerofoil buffet are linked to a global instability, which leads to shock
oscillations and dramatic lift fluctuations. The problem is analysed using the Reynolds-
averaged Navier–Stokes equations, which for the foreseeable future are a necessary
approximation to cover the high Reynolds numbers at which transonic buffet occurs.
These equations have been shown to reproduce the key physics of transonic aerofoil
flows. Results from global-stability analysis are shown to be in good agreement with
experiments and numerical simulations. The stability boundary, as a function of
the Mach number and angle of attack, consists of an upper and a lower branch –
the lower branch shows features consistent with a supercritical bifurcation. The
unstable modes provide insight into the basic character of buffeting flow at near-
critical conditions and are consistent with fully nonlinear simulations. The results
provide further evidence linking the transonic buffet onset to a global instability.

1. Introduction
Transonic buffet is characterized by large-scale lift oscillations that can limit the

flight envelope of aircraft. This generally occurs at the higher lift coefficients associated
with higher-altitude flight. Many of the features observed in aeroplane buffet are also
observed in the unsteady flow fields of transonic aerofoils. Starting at a moderate
lift coefficient, as the angle of attack is increased the shock intensifies and moves aft
over the aerofoil. At sufficiently high angles of attack, the boundary layer separates –
either as a bubble at the foot of the shock or at the trailing edge. Further increases
in the angle of attack often lead to separation at the shock, extending to the trailing
edge. At some point in this process, the flow can become highly unsteady with large
oscillations in the shock position leading to large lift fluctuations.

The practical problem of aeroplane buffet results from a structural response to
the buffeting flow field. Predictions of aeroplane buffet are often highly empirical,
attempting to link different features of the flow field with measured accelerations of
the aeroplane structure. Meanwhile, the prediction of the onset and character of the
unsteady flow field is itself a great challenge. The transonic aerofoil has been used
as a model problem for understanding the unsteady forcing, since it exhibits features
similar to the aeroplane buffeting response. Controlled experiments show a fairly
sudden onset of flow unsteadiness as the angle of attack is increased (McDevitt &
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Okuno 1985; Jacquin et al. 2005). This is characterized by large pressure fluctuations
near, and downstream of, the shock.

A number of empirical criteria have been proposed for predicting the onset of
buffeting flow (see, for example, the review of Lee 2001). These are linked to heuristic
models, which describe the structure of the buffeting flow field. One of the simplest
of these criteria is based only on a threshold for the pre-shock Mach number. Other
models consider zones of separation and how these vary with changes in the shock
strength or position. While some of these models provide useful descriptors for the
flow behaviour, they have not been effective as predictors for the buffet onset. Lee
(2001) notes in his review that even though the buffet problem has been known for
50 years, the physical mechanism for buffet onset is still not fully understood.

Meanwhile, Crouch, Garbaruk & Magidov (2007, hereafter CGM) have linked the
origins of aerofoil buffet onset to a global instability of the underlying flow field. The
stability theory effectively predicts the initial buffet boundary (Crouch et al. 2007,
2009) and the structure of the buffeting velocity field (Crouch et al. 2009). Here we
make use of a combination of global-stability theory and unsteady Reynolds-averaged
Navier–Stokes (URANS) simulations to further explore the origins of transonic buffet
and to assess existing empirical and mechanistic descriptors and predictors for buffet
onset. Results are presented to illuminate the basic character of the global-instability
bifurcation and to more fully map the stability boundary at higher Mach numbers.

2. Global-stability theory
Global-stability theory has been used to analyse a wide variety of low-speed laminar

flows, as reviewed by Theofilis (2003). Here we follow the formulation of CGM,
which accounts for high Reynolds numbers and compressible flow. We consider two-
dimensional transonic flow, with chord Reynolds numbers of Rec = O(107). At these
Reynolds numbers, much of the viscous shear-layer flow is turbulent. However, in
the current study we are interested in time scales much longer than the characteristic
eddy time scales. Thus, we employ the URANS equations, where the large-scale
unsteadiness is explicit, but the effects of the turbulence fluctuations in the shear
layers are modelled to provide closure for the averaged Reynolds stresses (see § 3 for
more details). The turbulence model used is the compressible form of the Spalart–
Allmaras (S-A) model (Spalart & Allmaras 1994) – including the compressibility
correction (Spalart 2000). Here, we focus on flows that can be treated as either
laminar or ‘fully turbulent’, which removes the need for the trip-term functions.
This leads to a set of five equations: continuity, streamwise momentum, transverse
momentum, energy and modified eddy-viscosity equations. These equations can be
written in terms of the primitive variables q = {ρ, u, v, T , ν̃} as follows:

∂

∂t
M [q] + Q [q] + N [q, q] = 0, (1)

where M and Q are linear operators and N contains all nonlinear terms.
The boundary conditions imposed on the surface of the body are

u = v = 0,

∂ρ

∂n
=

∂T

∂n
= 0,

ν̃ = 0,

⎫⎪⎪⎬
⎪⎪⎭

(2)

where ∂/∂n is a derivative normal to the surface, and the density condition is
derived from the equation of state. The far-field conditions used in the compressible
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computations involve not only the primary variables ρ, u, v, T , ν̃ but also the Riemann
invariants. These conditions, expressed in terms of the primary variables, are given as

I1 = Vn +
2a

(γ − 1)
= kxu + kyv +

2

(γ − 1)

√
γRT ,

I2 = Vn − 2a

(γ − 1)
= kxu + kyv − 2

(γ − 1)

√
γRT ,

I3 = Vτ = kyu − kxv, I4 =
RT

ργ −1
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3)

Here kx, ky are the local directional cosines of the boundary normal. These conditions
are imposed on the subsonic boundaries in the following way: On the inlet boundary,
ν̃ and invariants I1, I3, I4 are given, and I2 is extrapolated from the computational
domain. On the outlet boundary, ν̃ and I1, I3, I4 are extrapolated from the
computational domain, and I2 is given.

The state vector describing the total flow field can be decomposed into a steady
state q̄ = {ρ̄, ū, v̄, T̄ , ¯̃ν} and an unsteady vector q ′ = {ρ ′, u′, v′, T ′, ν̃ ′}, q = q̄ + q ′.
The vector q̄ is a solution to the steady form of (1)–(3) – that is with ∂ q̄/∂t ≡ 0.
The steady-state RANS equations are normally rewritten in conservative form before
being solved numerically. For conditions close to steady state, the unsteady component
q ′ can be considered a small perturbation to the vector q̄. Substituting q = q̄ + q ′

into (1), cancelling the terms governing q̄ and linearizing the equations in terms of q ′

yields

∂

∂t
M [q ′] + Nq̄ [q ′] = 0. (4)

The linear operator M contains the terms associated with the time derivatives from
the original equation (1). The linear operator Nq̄ consists of linear terms from the
original equations and the terms generated by nonlinear interactions between q̄ and
q ′.

The unsteady perturbation to the steady-state flow q̄(x, y) can be represented by
time-harmonic modes of the form

q ′(x, y, t) = q̂(x, y) · exp (−iωt) . (5)

The function q̂ describes the mode shape, and ω is the frequency. In general, both
q̂ and ω can be complex, so the physical solution is taken as the real part of (5).
Substituting (5) into (4) and rescaling the terms yields a system of equations for q̂
and ω:

−iωq̂ + L (q̄) · q̂ = 0, (6)

with L being a second-order differential operator.
The boundary and far-field conditions are obtained by introducing q = q̄ + q ′

into the expressions (2) and (3), cancelling the terms governing the steady state
and linearizing with respect to q ′. Then substituting (5) for q ′ yields the boundary
conditions for q̂:

û = v̂ = 0,

∂ρ̂

∂n
=

∂T̂

∂n
= 0,

ˆ̃ν = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)
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The far-field conditions for the inlet boundary are given by

Î 1 = Î 3 = Î 4 = ˆ̃ν = 0,

∂Î 2

∂n
= 0,

⎫⎬
⎭ (8)

and for the outlet boundary

∂Î 1

∂n
=

∂Î 3

∂n
=

∂Î 4

∂n
=

∂ ˆ̃ν

∂n
= 0,

Î 2 = 0.

⎫⎪⎬
⎪⎭

(9)

The variables Î 1, Î 2, Î 3 and Î 4 are the linearized versions of the Riemann invariants
(see (3)). Additional details are given in CGM. Equations (6)–(9) describe an
eigenvalue problem governing the complex frequency ω and mode shape q̂.

3. RANS, URANS and eigenmode analysis of transonic aerofoils
The dominant features of the turbulent flow over a transonic aerofoil, even at flow

conditions before buffet onset, include a strong adverse pressure gradient, shock-
boundary layer interaction and shock-induced separation. This makes an accurate
prediction of such flows in the framework of RANS modelling a severe challenge
for turbulence models. Nonetheless, at least some of the contemporary turbulence
models are shown to be reasonably successful in terms of acceptable agreement with
experiments (e.g. S-A model with the compressibility correction Spalart 2000 used
in the present work and k–ω shear-stress transport model of Menter 1994). The
RANS calculations predict the major flow parameters, such as shock location, extent
of the separation zone, pressure recovery downstream of the shock and pressure in
the trailing-edge zone. This has been demonstrated in numerous studies (see, e.g.,
Catalano & Amato 2003; Garbaruk et al. 2003; Bigarella & Azevedo 2007). Thus,
there is strong evidence in favour of some RANS models’ capability for capturing
major transonic-aerofoil flow physics.

For RANS application to transonic-aerofoil flows at buffeting conditions, the
experience accumulated is far more limited. Moreover, generally speaking, using
the RANS equations in the unsteady mode (URANS approach) does not have a
rigorous theoretical background (see e.g. Shur et al. 2005; Israel 2006). However,
unlike inherently unsteady turbulent flows, the periodic motion of the shock that is
a key feature of buffet phenomenon occurs at very low frequencies (non-dimensional
frequency f c/U � 1). Therefore, there is a wide gap between the high frequencies of
attached-shear-layer turbulence and the global unsteadiness characteristic of buffet.
This justifies using the URANS approach for prediction of transonic buffet on
aerofoils assuming that the unsteady mean flow is resolved and that the near
wall turbulence is successfully modelled by the same turbulence models shown to
be applicable for steady transonic aerofoils with shock-induced separation. This
conjecture is supported by the recent studies of Thiery & Coustols (2006) and CGM
and gets an additional confirmation in the present work. Note that modelling transonic
buffet as a low-Reynolds-number laminar flow would introduce much greater levels
of approximation and is unlikely to be effective for investigating this phenomena.
A laminar boundary layer would alter the shock location and would transition to
turbulence or experience massive separation when going through the shock.

Both the RANS and URANS computations are performed using the New
Technologies and Services (NTS) code (Strelets 2001), which is based on an implicit
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Figure 1. Typical two-block grids used for the (a) RANS/stability analysis and (b) the
URANS analysis. Block 1 grid size is 455 × 145 in (a) and 403 × 97 in (b).

finite-volume formulation on a structured multi-block overlapping grid. A third-order
Roe (1981) scheme is used for the inviscid fluxes, and a second-order central difference
scheme is used for the viscous momentum and heat fluxes. The convective terms in
the turbulence-model equation are approximated using a first-order upwind scheme.
In the URANS calculations, the time derivatives are approximated with second-order
backward differences (three-layer scheme) with sub-iterations. The code has been
exercised for more than 10 years and is proven to be rather accurate and reliable in
both RANS and hybrid, RANS/large eddy simulation (RANS/LES), applications.

The eigenvalue problem is also numerically solved using finite differencing. Similar
to the steady base flow, upwind differencing is needed to prevent oscillations from
the shock. In order to reduce the numerical dissipation of the upwind differencing,
we use a ‘hybrid’ scheme for the stability equations, as in CGM. This is weighted
between upwind and central differencing:

�H = αH�3u + (1 − αH )�4c, 0 � αH � 1. (10)

The finite-difference operators �3u and �4c correspond to the third-order upwind
and fourth-order centred schemes respectively, and αH is the weighting constant.
The influence of the weighting constant is considered in CGM; the current results
are based on αH = 0.2. For the stability equations, the upwind finite-differencing
approximations are linear.

The steady base flow and the stability equations are solved on the same grid. Typical
grids used in the presented results are shown in figure 1. The grid of figure 1(a) is
used for the RANS and stability calculations. The grid is highly refined in the
neighbourhood of the shock, with local streamwise grid spacing of �xs = O(0.001c).
Most of the presented URANS results are based on the grid of figure 1(b). However,
the grid of figure 1(a) and other grids (both coarser and finer resolutions) were also
used in the URANS calculations when testing for grid sensitivity.

The discretized eigenvalue problem results in a matrix of dimension O(100000),
which is solved using the implicitly restarted Arnoldi method (Lehoucq, Sorensen
& Yang 1998). Prior to solution, a spectral transformation is used to transform the
eigenvalues in the neighbourhood of ω∗ into extreme values for the system. This is
achieved using the ARPACK routines (Lehoucq et al. 1998) with the shift–invert
mode. The value of the prescribed frequency ω∗

r is chosen based on experimental
data, where available, or based on the basic model scaling. The prescribed growth
rate ω∗

i is taken to be positive. By varying the prescribed frequency, a search can be
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made for all unstable modes over a given range. Instability, signifying the onset of
unsteadiness, occurs when ωi > 0.

An unsteady perturbation to a flow field containing a shock will have a large
response at the shock location. As a shock is better resolved it becomes thinner,
and the unsteady response takes the form of a delta function. A typical steady-flow
solution captures the shock over two or three grid points. A linear perturbation to
this flow field will exhibit ‘ringing’ in the neighbourhood of the shock unless some
form of shock smoothing is done. The ringing due to the shock will contaminate
the eigenfunction and may alter the eigenvalue. To address this, we perform a two-
step shock smoothing after the steady flow is calculated. First, the original solution
to the steady RANS equations is smoothed over the entire computational domain,
resulting in a smoothed field q̄smooth. The smoothing is preformed in the dominant
flow direction over NSC smoothing cycles. During each cycle, the flow variables are
modified according to

q̄(i, j ) = q̄(i, j ) + 0.5 ci [q̄(i + 1, j ) − 2q̄(i, j ) + q̄(i − 1, j )], (11)

where ci is a smoothing coefficient that controls the amount of smoothing per cycle.
The field q̄smooth is defined by the value of q̄ after NSC smoothing cycles. For all of
the results presented in this paper, ci = 0.1. In the second step, the smoothed field
is blended with the original field in the neighbourhood of the shock, where the grid
spacing is very fine; away from the shock, q̄ is given by the original field.

4. Buffet onset
To examine the origins of buffet, we focus on the NACA0012 aerofoil as considered

in the experiments of McDevitt & Okuno (1985). The experiments show an onset of
buffeting flow as the angle of attack is increased at a fixed Mach number. Subsequently,
the level of unsteadiness, as measured by surface pressure, increases with the angle
of attack. Mach contours from RANS calculations at angles of attack just below
the buffet onset are qualitatively similar for different Mach numbers, showing a
relatively strong shock followed by a dramatically thickened boundary layer. Near
buffet onset, the Mach numbers just before the shock are M1 = 1.42, 1.40 and 1.38
for the free-stream Mach numbers M = 0.72, 0.76 and 0.80, respectively. The value
M1 does not provide an obvious indicator for the buffet onset, although the general
levels fall between the M1 = 1.34 (observed on the biconvex aierofoil; Mabey, Welsh
& Cripps 1981) and M1 ≈ 1.42–1.52 (observed on a more conventional wing aerofoil;
Lee 1990).

Following the global-stability analysis, the origin of unsteadiness is predicted by
the onset of instability. Figure 2 shows the variation of the instability growth rate as
a function of angle of attack for M = 0.76. The different curves signify different levels
of shock smoothing prior to the stability calculation, with NSC = 0 corresponding to
no smoothing. The buffet onset is predicted to occur at α ≈ 3.02◦ (with NSC = 80).
In CGM, the smoothing was shown to affect the growth rate due to the change
in the shock thickness. Thus, the streamwise grid spacing around the shock also
has an influence on the growth rate. For the grid spacing of the curves in figure 2
(�xs/c = 0.0015), the smoothing (with NSC = 80) results in a shift of α = 0.03 in
the buffet onset, as compared to no smoothing. This is considered to be a small
source of uncertainty compared to other potential sources, such as nonlinear effects.
Grid convergence is demonstrated by the circular symbols, which show the calculated
neutral points for different grid spacing near the shock, with fixed NSC = 80.
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Figure 2. Variation of growth rate with aerofoil angle of attack for different levels of
smoothing, (NSC = 0, 80, 160, with �xs/c = 0.0015), at M = 0.76, Re = 107. Circular symbols
show the neutral points calculated with different grid spacing (�xs/c = 0.001, 0.002, 0.003)
for NSC = 80.
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Figure 3. Buffet-onset boundary for an NACA0012 aerofoil, with URANS simulation
results and experimental data of McDevitt & Okuno (1985); Re = 107.

The stability boundary is obtained by conducting an analysis similar to that in
figure 2 at different free-stream Mach numbers. Figure 3 shows the buffet-onset
boundary for the NACA0012 aerofoil. The solid line is the prediction from global-
stability theory (with NSC = 80), and the open circles are from the experiment of
McDevitt & Okuno (1985). Also plotted are results from URANS calculations, where
the solid symbols show conditions that remain steady, and the open symbols show
conditions that are unsteady; these results are for the grid of figure 1(b). The theory,
experiment and URANS calculations are all in very good agreement for M < 0.8.
This good agreement provides evidence for global instability being the cause for
transonic-aerofoil buffet onset.

Around M = 0.8 the experiment shows an earlier onset of unsteadiness compared to
the theory and computations. The stability theory shows significantly smaller growth
rates associated with the instability at M = 0.8 (max[ωi] < 0.015) as compared to
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Figure 4. Skin-friction coefficient from RANS calculations at angles of attack just below
(solid line) and above (dashed line) the predicted buffet onset. NACA0012 aerofoil results at
Re = 107 and (a) M = 0.72, (b) M = 0.76 and (c) M = 0.80.

M = 0.76 (max[ωi] ≈ 0.08). At Mach numbers beyond M ≈ 0.804, the flow is stable.
Below M ≈ 0.804 there is an upper branch to the stability boundary, signifying
that at higher values of α the flow again becomes steady. The URANS approach
provides only steady solutions for M � 0.8; this is consistent with the stability results
showing small growth rates, which can be damped by numerical dissipation in the
time evolution of the URANS equations. URANS simulations on a finer grid (95 000
nodes compared to 52 000, with �xs/c = 0.0025) show the same results, although
the rate of damping is reduced. This suggests that the numerical dissipation (while
necessary for accommodating shocks) is corrupting the solution when very close to
the stability boundary. At M = 0.78 and M = 0.79 the URANS approach also
gives steady solutions at higher values of α, consistent with the upper branch on
the stability boundary. The predicted growth rate at M = 0.79, α = 3.0 (where the
URANS result is steady) is 0.015.

An effort to identify additional unstable modes at lower α showed nothing that
could explain the difference with the experiment at M = 0.8. Since the URANS
approach and the stability theory are in general agreement regarding the initial
onset of unsteadiness, the discrepancy with the experiment is likely the result of
deficiencies in the calculated steady flow, affecting both the stability and the URANS
approach (e.g. from turbulence modelling) or deficiencies in the experiment (e.g. from
tunnel unsteadiness or blockage effects). Independent of the differences with the
experiment at M = 0.8, the exact values for the predicted buffet boundary depend on
the turbulence model. This is similar to the post-buffet analysis, which shows some
dependence on the choice of turbulence model (Thiery & Coustols 2006). However,
as discussed in § 3, the better models yield consistent results.

We now examine characteristics of the separated flow at and around the buffet-
onset condition. Figure 4 shows the steady-state skin-friction coefficient downstream
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of the shock for three different free-stream Mach numbers. In each case, the solid
line corresponds to an angle of attack just below the predicted buffet onset, and the
dashed line is for an angle of attack just above the predicted buffet onset – thus
bounding the onset condition. For M = 0.76 (figure 4b), the pre-buffet flow exhibits
a separation bubble starting at the foot of the shock, which is near to ‘bursting’.
This behaviour is roughly in agreement with the idea that buffet onset occurs once
the separation bubble extends from the shock to the trailing edge (Pearcey 1958;
Pearcey & Holder 1962). However, for M = 0.72 (figure 4a) the steady flow exhibits
a bubble both before and after the predicted buffet-onset condition – showing no
link between bubble ‘bursting’ and buffet onset. Meanwhile, for M = 0.8 (figure 4c)
the flow is separated from the foot of the shock both before and after the predicted
buffet-onset condition. The experiments show buffet onset at α ≈ 1◦ for M = 0.80 (see
figure 3). The steady RANS solution shows attached flow at the trailing edge for α ≈
1◦. Overall, the results for the NACA0012 aerofoil do not show a clear link between
buffet onset and the qualitative features of the flow separation.

5. Buffeting flow
At buffet onset, the shock begins to oscillate fore and aft (McDevitt & Okuno 1985;

Lee 1990; Bartels & Edwards 1997; Jacquin et al. 2005). Meanwhile, the boundary
layer downstream of the shock exhibits periodic thickening and thinning, which are
phase locked to the shock motion. The velocity component of the global instability
(u′ in (5)) exhibits this exact behaviour – although its applicability is limited to small
amplitudes. Figure 5 shows eight snapshots of the corresponding unsteady pressure
for the unstable flow at M = 0.76, α = 3.2. The pressure fluctuation appears to
originate near the base of the shock. The pressure perturbation moves upward along
the shock until reaching the top of the sonic zone. It then moves forward becoming
ingested into the zone of sonic flow. As the pressure perturbation moves upward
along the shock, it also moves aft – intensifying as it approaches the trailing edge.
The pressure wave goes around the trailing edge and then propagates forward along
the lower surface. The pressure fluctuation is relatively weak at the leading edge at
which it experiences a significant phase shift before being ingested into the sonic zone.
This unsteady flow structure is also seen in the URANS simulation for M = 0.76,
α = 3.25, where the peak-to-peak shock motion is �xshock/c ≈ 0.1 (see figure 6). This
behaviour is qualitatively different from the working model proposed by Lee (1990).
In that model, buffet was assumed to result from a feedback cycle between the shock
and the trailing edge; pressure waves generated at the shock propagate downstream
inside the boundary layer and are scattered at the trailing edge, resulting in upstream-
propagating waves outside the boundary layer – when these waves impact the shock
they generate new waves starting a new cycle.

Figure 6 shows the variation of the peak-to-peak amplitude of the shock oscillation
�xshock/c and the surface pressure fluctuation p′/p0 at x/c = 0.8 as obtained from
the URANS. Assuming zero amplitude at α ≈ 3.02◦, both of these measures of
the disturbance amplitude initially increase rapidly with α. It is not possible to
get unsteady solutions with URANS below α ≈ 3.2◦ because the relatively weak
unsteadiness (very small growth rate) appears to be damped by numerical dissipation.
At higher angles of attack the fluctuation amplitude appears to saturate. This
behaviour is in general agreement with the experiment of McDevitt & Okuno (1985),
which shows rapidly increasing p′ amplitude with α, followed by an amplitude
saturation. The large square on figure 6 shows an estimate for the p′ amplitude
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angle of attack for M = 0.76, Re = 107. Also shown is the instability growth rate and the
p′/p0 observed in the experiments of McDevitt & Okuno (1985).
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Figure 7. Variation of frequency with aerofoil angle of attack for M = 0.76, Re = 107. The
experimental value is from McDevitt & Okuno (1985).

taken from the experiment at a slightly higher Mach number M ≈ 0.77. Near buffet
onset, the instability growth rate also exhibits near-linear variation with the angle of
attack. Thus, the amplitude variation near the critical conditions is consistent with a
supercritical bifurcation from a weakly nonlinear theory (Drazin & Reid 1981).

Figure 7 shows the variation of the buffeting frequency as the angle of attack
increases. Near buffet onset α ≈ 3.2◦, the URANS result is within 15 % of the
global-stability result. Simulations with different grids show negligible change in the
frequency, unlike the growth/decay characteristics. The differences are attributed to
nonlinear effects in the URANS approach; a linear extrapolation of the URANS
results down to α = 3.02◦ reduces the frequency difference to less than 10 %. As
α is increased, the stability theory shows a weak variation in frequency with α. By
contrast, the URANS frequency rises by 50 % over 1.5◦ of α variation. The large
symbol shows an estimate for the experimental frequency for these conditions – in
general agreement with the URANS approach. The significant rise in the URANS
frequency while the instability frequency is nearly constant is similar to the frequency
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variation for the early vortex shedding on a circular cylinder with increasing Reynolds
number (see, for example, CGM).

6. Conclusions
Buffet onset is analysed following the global-stability formulation of CGM and the

URANS numerical-simulation approach as implemented in the NTS code (Strelets
2001). The analysis shows the origin of buffet onset is tied to a global instability.
The buffeting flow in the neighbourhood of the onset condition is consistent with
a supercritical Hopf bifurcation. Global-stability analysis provides good qualitative
and quantitative descriptors for buffet onset. The method provides better predictive
capability than earlier empirical and heuristic models, which are currently in use.
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